THE ARCHITECTURE OF THE FARTH
SYSTEM MODELING FRAMEWORK

The Earth System Modeling Framework (ESMF) project is developing a standard software
platform for Earth system models. The standard, which defines a component architecture
and a support infrastructure, is being developed under open-software practices. Target
applications range from operational numerical weather prediction to climate-system
change and predictability studies.
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istorically, researchers have devel-
oped large-scale Earth science ap-
plications, such as ocean and atmos-
phere models, under monolithic
software-development practices, usually within
a single institution. Over the past decade, an em-
phasis on integrated multicomponent modeling
has emerged—reflecting an increase in scientific
capabilities and computing capacity, and result-
ing in several ambitious, coupled, Earth system
modeling efforts. In these coupled efforts, which
span institutions and disciplines, the current
monolithic software-development practices can
seriously hamper continued innovation in com-
plex, highly integrated simulations.
Most notably, current practices hinder broad com-
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munity sharing of software renditions of Earth sys-
tem modeling algorithms. This affects both model-
ing and innovation as well as the ability to effectively
synthesize models with data assimilation. In the lat-
ter case, the increased volume and availability of rich
observational data streams, especially from space-
borne remote-sensing platforms, requires specialized
data-assimilation software to rigorously combine
models and data. The absence of technology and
standards to let researchers share software results in
redundant development and impairs technology
transfer, which in turn impacts scientific progress.

On the Earth System Modeling Framework
(ESMF) project, we are building standards-based
open-source software that aims to increase software
reuse, component interoperability, performance
portability, and ease of use in Earth science appli-
cations. The project is a multi-institutional, cross-
disciplinary collaboration that includes many of the
largest Earth science modeling centers in the US;
the NASA Computational Technologies Program
is funding the initial three-year effort. In this arti-
cle, we describe the ESMF’s architecture, focusing
on the features that enable it to be flexible enough
to accommodate a wide and continually evolving
suite of modeling tools.
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ESMF Project Scope
ESMF’s specific focus is Earth system modeling.
Targeting this diverse but bounded domain permits
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a design and implementation strategy that satisfies
user requirements to an extent not possible with
generic software.

ESMEF has 15 initial testbeds that represent sev-
eral major modeling efforts (see www.esmf.ucar.edu
for the test code). These efforts, such as the Geo-
physical Fluid Dynamics Laboratory’s (GFDLs)
Flexible Modeling System (FMS; www.gfdl.gov/
fms) and the National Center for Atmospheric Re-
search’s (NCAR’s) Community Climate System
Model (CCSM),! represent research and opera-
tional applications in climate, weather, and data as-
similation. The testbed systems thus span a variety
of discrete grid approaches, numerical time-step-
ping techniques, software-programming para-
digms, and hardware platforms. The overall do-
main, however, is sufficiently focused to allow
identification of common domain-specific data and
control constructs and abstractions.

Motivation and Impacts

The ESMF project will affect Earth system mod-
eling in a wide range of situations. We plan to show
these impacts with a series of interoperability
demonstrations that use previously incompatible
state-of-the-art simulation codes (see Figure 1).
Currently, these configurations are impractical, but
our interoperability demonstrations will show how
ESMF can remove technical barriers. Table 1 lists
the model configurations we plan to demonstrate;
we’ll now describe the potential science impacts of
some of these demonstrations.

Numerical Weather Prediction

Large-scale atmospheric simulation has been a key
ingredient of numerical weather prediction since the
1950s. Because forecast skill is especially sensitive to
boundary conditions, we’ll demonstrate operational
forecast model configurations in the project that
couple an atmospheric simulation to an interactive
ocean at the lower boundary. In Figure 1, this cor-
responds to connecting the National Centers for
Environmental Prediction’s NCEP) Weather Re-
search and Forecast (WRE, Figure 1f) models with
the GFDLs FMS suite (Figure 1b). Such a capabil-
ity has direct relevance for forecasting tropical storm
paths more accurately, which is significant to coastal
communities and maritime enterprises.

Seasonal and Interannual Forecasts

Forecasts of seasonal or interannual (SI) phenomena
are an increasing area of interest. Evidence suggests
that accurately forecasting ocean conditions (for ex-
ample, the El Nifio and La Nifia phenomena in the
Pacific Ocean) could improve the predictability of
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Table 1. New application configurations from the ESMF project.

Model 1 Model 2 New science enabled

GFDL MIT ocean Introduction of global biogeo-

atmosphere chemistry into seasonal
forecasts

GFDL ocean  NCEP New seasonal forecasting

atmosphere system

NSIPP ocean  LANL sea ice Extension of seasonal
prediction system to
centennial timescales

NSIPP DAO analysis Assimilated initial state for

atmosphere seasonal prediction system

DAO analysis NCEP model Intercomparison of systems
for NASA/NOAA joint center
for satellite data assimilation

DAO NCEP analysis Intercomparison of systems

atmosphere for NASA/NOAA joint center
for satellite data assimilation

NCAR MIT ocean Component exchange for

atmosphere improved climate prediction
capability

NCEP/ GFDL or other Development of hurricane

WRF ocean prediction capability

atmosphere

DAO: NASA’s Data Assimilation Office; GFDL: Geophysical Fluid Dynamics Labora-
tory; LANL: Los Alamos Nat'l Laboratory; NCAR: Nat'l Center for Atmospheric Re-
search; NCEP: Nat'l Centers for Environmental Prediction; NSIPP: NASA Seasonal

and Interannual Prediction Program; WRF: Weather Research and Forecast model

land-surface conditions (such as soil moisture content).
Coupling sea ice into SI prediction systems under
ESME is one way that will let researchers explore and
apply such ideas. In Figure 1, this corresponds to con-
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(d) (e)

Figure 1. lllustrations from models to be used in Earth System Modeling
Framework (ESMF) interoperability demonstrations. (a) The Data
Assimilation Office’s PSAS system, (b) the Geophysical Fluid Dynamics
Laboratory’s FMS system, (c) MITgcm, (d) the National Center for
Atmospheric Research’s CCSM, (e) NASA's Seasonal and Interannual
Prediction Program, and (f) NCAR and the National Centers for
Environmental Prediction Program’s WRF. Currently, these modeling
systems are computationally incompatible, but under ESMF, they’ll be
compatible while also continuing to evolve and develop independently.

Earth System Modeling
Framework superstructure

B

Figure 2. The Earth System
Modeling Framework “sandwich”
architecture has an upper-level
(superstructure) layer and a
lower-level (infrastructure) layer.
Arrows illustrate that the
superstructure-layer code (as well
as user code) can call the
infrastructure layer.

necting the NASA Global Model-
ing and Assimilation Office
(GMAO, Figure 1e) seasonal fore-

cast models with elements of

NCAR’s CCSM (Figure 1d).

Climate Change

To improve decadal and centen-
nial climate-change estimates, we
can use ESMF to configure inter-
operability demonstrations that
involve new interchanges of cli-
mate-model components. These
configurations will lay the founda-
tion for studies that can examine
the impact of large-component in-
terchange on climate-simulation
trajectories. In Figure 1, this cor-
responds to connecting ocean—

biogeochemistry configurations in the Massachusetts
Institute of Technology (MIT) General Circulation
Model (MITgcm, Figure 1c) with elements of the
CCSM and FMS suites (Figure 1b and d)

Software Frameworks

Addressing the interoperability and productivity is-
sues mentioned earlier does not require us to de-
velop new science codes. Instead, ESMF’s software
framework provides a custom environment that

supports a broad range of simulations. Software
frameworks build on the rich, flexible linguistic
concepts of object-oriented languages, especially
typing via classes, encapsulation, polymorphism,
and inheritance.

The NWChem? and Cactus® frameworks are ex-
amples of established multi-institutional, high-per-
formance computing framework efforts in compu-
tational chemistry and general relativity, respectively.
Both systems provide high-level abstractions and
programming environments framed in terms of the
science workflow of the domains they service. In the
Earth science community, initial domain-specific,
framework-related efforts include the FMS, the
Goddard Earth Modeling System (GEMS),* the
WRE,’ the MIT wrapper toolkit,’ the CCSM, the
Pilgrim communications toolkit,” and the model-
coupling toolkit (MCT).> The ESMF software
framework architecture described in this article aims
to unify, standardize, and extend all these efforts.

The ESMF architecture also leverages lessons
and technology from more general high-perfor-
mance computing frameworks such as POOMA,’
Overture,'” and STAPL (Space-Time Adaptive
Processing Library).!! These efforts provide many
useful abstractions for key mathematical constructs
on high-performance parallel systems.

An important paradigm that many software
frameworks use is component-based development.
Accordingly, we’re also incorporating ideas and
technology into ESMF from mainstream compo-
nent-based programming environments such as
Corba and the Common Component Architecture
(CCA)"? high-performance-oriented component-
programming environment. Naturally, the com-
ponent model the ESMF architecture supports will
be tailored to the requirements of high-perfor-
mance Earth science models.

Architectural Overview

A sandwich pattern characterizes the ESMF architec-
ture (see Figure 2). User-code components that imple-
ment an algorithm’s scientific elements—for example,
evaluating finite-difference calculations or radiation-
physics terms—fit between two layers: superstructure and
infrastructure. The superstructure layer’s role is to pro-
vide a shell that encompasses user code and a context
for interconnecting input and output data streams be-
tween components. The infrastructure layer provides a
standard support library that developers can use to
speed up construction of components and ensure con-
sistent, guaranteed component behavior.

Programming Paradigm
A complete executable assembly of superstructure,
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user-code, and infrastructure components collec-
tively forms an ESMF application. Figure 3 shows a
single-tier composition with three hypothetical com-
ponents and captures the essence of the composition-
based programming paradigm that ESMF uses.

Connecting one or more numerical simulations
or other user-code components in an ESMF-based
environment forms an application (Figure 3a).
Users write or modify code components (Figure
3¢) to fit into the ESMF environment that en-
velopes the code and supports a unified high-level
viewpoint for connecting data and controlling flow
between components. The foundation-level infra-
structure (Figure 3b) accelerates development and
ensures compatibility and consistency among com-
ponents and between hardware platforms.

ESMF encourages multitier composition (in
which components are recursively nested). User-
code components that don’t maintain internal per-
sistent state on return can be safely instantiated
multiple times in the same application under ESMF.

Existing Codes

The Earth science community has a large body of
existing Fortran codes that predate the development
of object-oriented languages and contain features
not ideally suited to a component framework. Per-
sistent internal state in global data structures pre-
sents subtle problems. Specifically, problems arise
if we create two copies of the same legacy-code-
derived component in a single process, or if com-
ponents derived from different legacy codes happen
to use the same global names. The ESMF architec-
ture lets us convert such codes into components, but
their safe use under ESMF will be limited to con-
figurations in which each instance of a component
executes in its own set of processes.

Existing codes also include both single-program,
multiple-data (SPMD) applications and multiple-
program, multiple-data (MPMD) applications.
ESMF supports both these programming models,
so components derived from existing SPMD or
MPMD code bases fit easily into its architecture.

These features will make it possible to effectively
and productively use ESMF with many existing
codes. ESMF’s initial release in May 2003 provided
examples of how to use it in an SPMD mode with
newly created components. As the interoperability
experiments become hardened, we’ll make exam-
ples available that show migration of existing codes
to ESMF in both SPMD and MPMD form.

Superstructure Layer
ESMF superstructure layers furnish a unifying con-
text within which to interconnect user components.

1. ESMF provides an environment for assembling components

Application driver

Gridded “ Coupler “
components components

(a) [ [
2. ESMF provides a toolkit that components use to
e ensure interoperability Component run(), checkpoint():
e abstract common services Field: halo(), | Grid: regrid(),
import(), transpose() +
export() + 1/0O [ Metrics
(b) DELayout, PEList, Machine model

3. Gridded components and coupler components are user written

Q)

Figure 3. The Earth System Modeling Framework (ESMF) programming
paradigm. An application is an assembly of (a) one or more gridded and
coupler components. Components can use the (b) ESMF infrastructure

toolkit, but all components are primarily (c) user written.

Superstructure-layer classes provide the foundation
for a flexible mechanism to address physical consis-
tency between components that might use different
dimensions or units to represent the same quantity,
or that may partition physical data differently on a
parallel computer. Classes called gridded components,
coupler components, and ESMF states are used in the
superstructure layer to achieve this flexibility.

ESMF State Class

User-code components under ESMF use special
objects for component-to-component data ex-
changes. These objects are of type ESMF state;
every component accepts one or more ESMF states
as import states and produces one or more ESMF
states as an export states. The ESMF state type sup-
ports methods that allow user-code components, for
example, to fill an ESMF state object with data to
be shared with other components or to query a state
object to determine its contents. The ESMF state
class includes fields used to describe the data thata
state object holds. The conventions used to describe
fields are not, however, prescribed by ESMF.

We designed the ESMF state abstraction to be
flexible enough to not need to mandate a single
standard for describing fields. For example, ESMF
does not prescribe the units of quantities exported
or imported; instead, it provides mechanics to de-
scribe the units, memory layout, and grid coordi-
nates of the fields contained within import and ex-
port states. This lets the ESMF software support
user-community-defined standards for describing
physical fields. The interoperability experiments
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Phase 1. Creation creates components and registers user-code procedures for methods called in later phases. Create
steps also are called for gridded component COMPONENT2 and coupler component COUPLER21 (not shown).

COMPONENT1 = EMSF_GridCompCreate (“Example Component 1”, DELAYOUT_ GC1)
CALL ESMF_GridCompSetServices (COMPONENT1, componentl_register)
COUPLER12 = EMSF_CplCompCreate (”Example Couplerl2”, DELAYOUT CPL12)

Phase 2. [nitialization calls the user-code initialization procedures registered in phase 1. Initialize steps are also called
for COMPONENT2, COUPLER12, COUPLER21 (not shown)

CALL ESMF_GridCompInitialize (COMPONENT1, IMPORT1l, EXPORT1, CLOCK, RC)

Phase 3. Run calls the user code’s run procedures, normally within one or more control loops (not shown). At each
loop iteration, gridded component COMPONENT1 receives import and export ESMF state objects, IMPORT1 and EX-
PORT1. The run procedure of coupler component COUPLER12 maps between EXPORT1, the export ESMF state ob-
ject of COMPONENT1, and IMPORT2, the import ESMF state object of gridded component coMPONENT2. The coupler
component COUPLER21 acts in the opposite sense. It maps the cCOMPONENT2 export ESMF state, EXPORT2, onto IM-
PORT1, the import ESMF state object of coMPONENT1. The run procedures use values set (not shown) in the ESMF
clock object cLock.

CALL ESMF_GridCompRun (COMPONENT1, IMPORT1, EXPORT1l, CLOCK, RC)
CALL ESMF_CplCompRun (COUPLER12, EXPORT1l, IMPORT2, CLOCK, RC)
CALL ESMF_GridCompRun (COMPONENT2, IMPORT2, EXPORT2, CLOCK, RC)
CALL ESMF_CplCompRun (COUPLER21, EXPORT2, IMPORT1l, CLOCK, RC)

Phase 4. Finalize executes shut-down I/0 and deallocates resources.

CALL ESMF_GridCompFinalize (COMPONENT1, IMPORT, EXPORT, CLOCK, RC)
CALL ESMF_GridCompDestroy (COMPONENT1, RC)

Figure 4. Simplified Fortran-like pseudo code for two gridded components. COMPONENT1 and COMPONENT?2 communicate with
one another through two coupler components, COUPLER12 and COUPLER21.

use the emerging climate and forecast (CF) stan-
dards for describing physical fields (see www.cgd.
ucar.edu/ cms/eaton/cf-metadat).

Gridded Component Class

The gridded component class holds a user compo-
nent that takes in one import ESMF state and pro-
duces one export ESMF state, both based on the
same discrete grid. Examples of gridded compo-
nents include major parts of land-surface, ocean,
atmospheric, and sea-ice models. Components
used for linear algebra manipulations in a state-es-
timation or data-assimilation optimization proce-
dure also are created as gridded components.

Coupler Component Class

The other top-level class supported in the current
ESMEF architecture is the coupler component class.
Coupler components take in one or more import
ESMF states as input and map them through spa-

tial and temporal transformation onto one or more
output export ESMF states. In coupler components,
the output export state is often on a different dis-
crete grid to that of its import state. For example, in
a coupled ocean—atmosphere simulation, we would
use a coupler component to map a set of sea-surface
fields from the ocean model (itself a gridded com-
ponent object) to the appropriate planetary bound-
ary layer fields in the atmospheric model (another
gridded component object), interpolating between
different grids as needed.

Coding with Superstructure Classes

The code fragments in Figure 4 use Fortran-based
syntax to illustrate the coding approach used in
ESME. A full set of working example code together
with extensive explanatory material is included in
the software distribution available on the project’s
Web site (www.esmf.ucar.edu). We invoke user
code via generic methods so that code for a partic-
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ular object (for example, an atmosphere ESMF
gridded component) must provide bindings to
generic methods. The ESMF library includes func-
tions to register a user-code procedure that binds
to a particular generic methods.

A step-by-step example. The heavily simplified ap-
plication scenario in Figure 4 demonstrates a sys-
tem of two gridded components, COMPONENT1
and COMPONENT?2, and two coupler components,
COUPLER12 and COUPLER21. In a real application,
the two gridded components might be full ocean
and atmosphere models, or one component might
be a full ocean model and the other component
could load appropriate fields from data archives.

The application life cycle in Figure 4 consists of
four major phases: create, initialize, run, and final-
ize. At each phase, an ESMF application invokes
user code by calling generic methods of super-
structure classes. The component objects in this ex-
ample, COMPONENT1, COMPONENT2, COUPLER12,
and COUPLER21, are given as arguments to the
generic methods. The framework then invokes
component-specific procedures (registered through
creation-phase calls to ESMF_GridCompSetSer-
vices) from the generic methods.

In the initialization phase, components allocate
the key data structures used to pass persistent state
in and out. During the run phase, gridded compo-
nents exchange data with one another through state
objects. This data exchange occurs in two steps so
that, for example, the export ESMF state EXPORT1
from cOMPONENT1 doesn’t transfer directly to the
import ESMF state IMPORT2 of COMPONENT2. In-
stead, the data transfer occurs via an intermediary
coupler component cOUPLER12. ESMF uses the
same setup for the reverse data flow. The export
ESMF state EXPORT2 from gridded component
COMPONENT2 does not pass directly into the import
ESMF state argument of COMPONENT1—rather, it
passes first through coupler component cou-
PLER21. We use a terminal finalize phase to shut
down components cleanly.

The role of coupler components. Passing arguments via
coupler components instead of directly between
gridded components provides two advantages. In
a real application scenario, the gridded components
might have different gridding approaches or unit
conventions. Coupler components can hold user
code to correct for such mismatches. In parallel and
distributed computing scenarios, one gridded com-
ponent could execute on one set of processes, and
the other could execute on another set. In this sce-
nario, coupler-component user code transfers data

residing in the source component’s memory space
to the target component’s memory space. ESMF
DELayout objects (those with names beginning
DELAYOUT_ in Figure 4) grant processes and
threads to components. These objects are also used
within coupler components to map data between
gridded component memory spaces.

Tracking time. The ESMF clock provides consis-
tent notions of time between components. In Fig-
ure 4, we use a single ESMF clock object; all the
components’ behavior is latched to that clock in
user code. In more complex scenarios involving
components with different time steps and special
requirements for managing their temporal trajec-
tory, we might need several ESMF clock objects.

Adapting to ESMF. To fit an existing application
into the ESMF outline in Figure 4, a model de-
veloper must

1. Decide how to organize the application as
discrete gridded and coupler components.
"The developer might need to reorganize code
so that individual components are cleanly
separated and their interactions consist of a
minimal number of data exchanges.

2. Divide the code for each component into
create, initialize, run, and finalize methods.
These methods can be multiphase.

3. Pack any data that will be transferred between
components into ESMF import and export
state data structures. The developer must de-
scribe the distribution of grids over proces-
sors on a parallel computer via DELayout.

4.Pack time information into ESMF time-
management data structures.

5.Using code templates provided in the
ESMF distribution, create ESMF gridded
and coupler components to represent each
component in the user code.

6. Register the specific names of each compo-
nent’s initialize, run, and finalize routines
with the ESMF framework.

7.Run the application using an ESMF appli-
cation driver.

Flexible Data and Control Flow

With ESME, we can array import and export states
and gridded and coupler components flexibly within
superstructure layers. Configurations with a set of
concurrently executing gridded components joined
through a single coupler component (see Figure 5)
are easily supported. Alternatively, configurations
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Figure 5. ESMF supports configurations with a single central coupler
component. We transfer inputs from all gridded components and
regrid them in one place. Arrows show how the coupler component
(the star icon) must take inputs from all gridded components (the
model output images) and return data to all gridded components.

Figure 6. ESMF supports configurations with multiple point-to-point
coupler components. We can transfer inputs from one gridded
component independently and regrid them for another gridded
component. The arrows show the data flow between point-to-point
pairings of coupler (the star icons) and gridded components (the model
output images).

with sets of sequentially executing components in-
terconnected by multiple pair-wise coupler compo-
nents (see Figure 6) are possible.

Infrastructure Layer

Figure 7 illustrates three gridded components
that use different grids coupled together. To
achieve this coupling, we must complete several
steps beyond defining superstructure import and
export ESMF state objects. We need coupler
components that can map between the different

grids, which also might involve mapping between
different units or memory layout conventions. In
a parallel compute environment, the coupler
components might have to redistribute between
different domain decompositions. To advance in
time correctly, the separate gridded components
must have compatible notions of time. Ap-
proaches to parallelism in the gridded compo-
nents must also be compatible. The infrastructure
layer contains a set of classes for developing pro-
cedures to regrid or redistribute data passing
among gridded components and to manage over-
all multicomponent system complexity. Let’s look
at these classes.

Field and Array Classes
Field and array class objects contain data along with
descriptive physical and computational attribute in-
formation. The computational attributes include in-
formation on the field data’s layout in memory. The
field class is primarily geared toward structured
data. A comparable class called location stream pro-
vides a self-describing container for unstructured
data streams (such as those obtained from satellites).
An ESMF field object contains a reference to an
ESMF grid object, which is a pairing of ESMF
physical and distributed grid objects. For each ar-
ray element in an ESMF field, an ESMF physical
grid object defines a physical space location. A dis-
tributed grid object describes the parallel domain
decomposition to which the physical grid, field, and
array adhere. Figure 8 shows the relationship be-
tween these objects.

Physical Grid Class

To support gridded and coupler component ab-
stractions, ESMF defines a physical grid class. This
general container can hold many of the different
discretized three-dimensional coordinate spaces
used in Earth system models. The initial set of sup-
ported grids (see Figure 9) includes conventional
latitude—longitude spherical polar and Cartesian
grids, generalized orthogonal curvilinear grids
(with structured and semistructured topologies),
and fully unstructured forms such as point-wise ob-
servational instrument measurements. The ESMF
physical grid class also can hold sufficient informa-
tion for each grid to support horizontal remapping
of fields between grids.

The physical grid class holds some additional in-
formation concerning vertical grid cells, but initial
versions of ESMF do not include built-in methods
to perform vertical regridding. The most immedi-
ate problems that ESMF addresses do not require
mapping between different vertical grids. The ver-
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tical grid information for grid cells is maintained
primarily as an option for user-code purposes and
for inclusion in I/O routines. We assume the verti-
cal and horizontal grids to be separable.

Physical Grid Internals

In Figure 7, separate physical grid objects hold in-
formation for the spectral, latitude-longitude, mo-
saic, and catchment grids. To do so requires a gen-
eral-purpose grid representation in which the
numeric values held in each grid’s physical grid ob-
ject differ. The design draws on approaches to gen-
eralized representation of grids established by sys-
tems such as FMS, GEMS, and SCRIP (the
Spherical Coordinate Remapping and Interpola-
tion Package)" as well as techniques from the
broader grid-generation community.'*

A latitude-longitude physical grid object holds
metadata that indicates that its underlying coordi-
nate space is spherical polar. Additional attributes
then specify possible coordinate space extrema (in
this case, in latitude or longitude) and enumerated
information such as whether grid and coordinate
lines are aligned. These fields provide grid meta-
data that allow sets of grid data (numeric values
stored in a physical grid object that define discrete
grid locations) to be initialized and interpreted ap-
propriately. The presence and interpretation of
specific sets of grid data depend on the metadata’s
attributes. For a regularly spaced grid with aligned
coordinate and grid axes, field data will be compact,
containing only scalars holding the grid spacing.
For an irregular grid spacing (with axes that don’t
align with coordinate space axes), grid data will be
much more extensive, requiring multiple arrays of
values along each grid dimension. Although the
grid data’s memory footprint is quite different in
these two scenarios, both are representable as a
physical grid object.

The physical grid metadata and grid data combi-
nation can accommodate the other grids illustrated
in Figure 7. For a spectral grid on a sphere, the co-
ordinate space metadata would enumerate to indi-
cate spherical harmonic “coordinates;” the field data
would hold wave numbers. For a mosaic land-sur-
face grid, the coordinate space would be spherical
polar, but the field data classification metadata
would enumerate to unstructured polygons. In the
latter case, framework applications interpret the
field data as a collection of vertices and edges using
techniques similar to those found in generalized
gridding packages.!* Other metadata enumerations
allow for physical grids that describe specialized en-
tities such as Gaussian correlation regions for ob-
servational points.'
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Figure 7. Schematic of coupled components that use different discrete
grids and time stepping. Component National Center for Atmospheric

Research (NCAR) atmosphere might use a spectral grid based on

spherical harmonics; Geophysical Fluid Dynamics Laboratory (GFDL)
ocean might use a latitude-longitude grid patched to exclude land
masses; and component NASA Seasonal to Interannual Prediction Project
(NSIPP) land might use a mosaic-based grid for representing vegetation

patchiness and a catchment-area-based grid for river routings.
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Distributed grid | Parallel decomposition information

Figure 8. Schematic diagram showing the hierarchical relationship
among the ESMF field, array, physical grid, and distributed grid classes.

Distributed Grid Class

The distributed grid class represents the data struc-
ture’s decomposition into subdomains—typically,
for parallel processing purposes. The class is de-
signed to hold information that supports general-
ized “ghosting” for tiled decompositions of finite-
difference, finite-volume, and finite-element codes.

Regrid and Redistribute Classes

The common physical and distributed grid repre-
sentations allow separate classes that accept data on
one physical grid—distributed grid pair and map the

JANUARY/FEBRUARY 2004

25



Y,0,0)

Spherical harmonics

Bipolar
¢| curvilinear

Kétang 7

Rotated pole

Ungridded

Lat-lon grid

Figure 9. Examples of some of the horizontal grids for which ESMF will
provide built-in regridding support.

data horizontally to another physical grid—distrib-
uted grid pair. Initially, a physical grid object’s pri-
mary role within ESMF applications is to support
regrid operations.

The regrid class is extensible and allows both
conservative and nonconservative remapping be-
tween a field on one physical grid to a field on a dif-
ferent one.'? It supports precomputation of grid in-
terpolation weights and allows user-selectable
corrections for global or local conservation re-
quirements. Regrid is designed to be scalable on
parallel platforms. When mapping between grids,
the regrid class uses a physical grid object, a dis-
tributed grid object, and field and array objects.

In its most general form, a regrid function R,
supports horizontal mappings

R;: (F, P, D) — (F', P, D"),

where F, P, and D are an input field, physical grid,
and distributed grid, and the primed quantities are a
new field on a different physical grid with a differ-
ent distributed grid. User code for a coupler that
maps between two different grids then consists of a
set of calls to regrid methods that proceed as follows.

First we create a regrid object rgobj (using the
function ESMF_FieldRegridstore) by specifying
source and target ESMF fields (sF and tF, respec-
tively) together with a method parameter method
that selects the regridding algorithm to use:

rgObj = ESMF_FieldRegridStore(sF, tF,
method)

Following ESMF_FieldRegridStore, the regrid
object rgobj will hold references to the necessary
data structures and interpolation metrics for per-
forming an actual regrid mapping. We determine
the set of data structures and interpolation metrics
needed by inspecting the ESMF physical grid and
distributed grid objects contained within the source
and target ESMF fields (sF and tF, respectively).

Once initialized, we use a regrid object to per-
form an actual mapping. The procedure call

CALL ESMF_FieldRegrid(sF, tF, rgObj)

invokes this operation. An associated set of redistrib-
ute methods Ry is also provided in ESMF that leaves
the physical grid fixed: Ry (F, P, D) — (F', P, D").

Decomposition Element Layout Class and
Communication Functions

Target platforms for ESMF span desktop machines
to very high-end supercomputers with large
processor counts and multilevel, often distributed,
memory hierarchies. The decomposition element
(DE) layout class, DELayout, insulates ESME’s up-
per levels from many parallelism issues.

Gridded and coupler components are bound to a
DELayout object when they are created (for exam-
ple, DELAYOUT_GC1 in Figure 4). A DELayout pro-
vides the component with a set of processes or
threads, collectively referred to as DEs, on which to
compute in parallel. (ESMF assumes that a message-
passing interface, or MPL,6 library is available for
process creation and labeling and that a POSIX
threads library!” is available for thread creation and
labeling.) To prevent race conditions between an ex-
port state’s producers and an import state’s con-
sumers, coupler components are always defined on,
at minimum, the union of the layouts of the compo-
nents they connect. This provides a mechanism for
coupler components to prevent computations start-
ing on a consumer before the producer has finished
generating values.

Optimizing communication. Regrid, redistribute, and
distributed grid classes usually require data trans-
fer between DEs. When methods of these classes
are invoked, the DELayout class determines how
to transfer the data. For process-to-process trans-
fers, DELayout defaults to using the MPI; for
thread-to-thread communication, it defaults to us-
ing direct-shared memory. However, on platforms
where special high-performance system libraries
exist (for example, shmem!®), DELayout could use
these directly for performance-critical functions.
The strategy here builds on experience in several
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existing systems.'*?" Our initial ESMF release uses
MPI between processes and shared memory be-
tween threads. Later versions of ESMF will include
shmem and possibly other system libraries.

Existing codes and the ESMF parallelism model.
Many major parallel Earth science codes use MPI.
The ESMF DELayout parallelism model sup-
ports an MPI communicator, which is an MPI
concept that provides a private communication
handle. This mechanism is designed to help codes
migrating to ESMF do so incrementally and to let
codes choose to adopt only parts of ESMF.

Time and Calendar Management Class

"To support synchronization between components,
ESMF has time and calendar classes along with its
associated clock class. These classes latch gridded
and coupler-component processing to a common
controlling clock.

The time and calendar classes support a range of
approaches to timekeeping. Numerical forecast
models typically require precise mechanisms for
tracking time so that observations can be incorpo-
rated at appropriate instants and forecasts can be tded
to the correct time. Climate models sometimes re-
quire calendars that are accurate for long periods
into the past or future. In many research scenarios,
time periods such as a year are simplified to repeat-
ing 360-day intervals. Other applications require
time to be carried in rational fractions to avoid nu-
merical rounding and associated clock drift. The
time and calendar classes provide built-in support
for all these different scenarios as well as facilities for
user-defined extensions. Incorporating this class into
ESMF ensures that we can develop components
with an exactly identical model of time.

1/0 Classes

The infrastructure layer defines a set of I/O classes
for storing and retrieving field and grid information
to and from persistent storage. The I/O classes sup-

port a range of standard formats including binary
I/0 and netCDF, HDFS5, and GRIB-based 1/0.

Logging and Profiling Class

We designed ESMF’s logging and profiling classes
to aid in managing the complexity of multicompo-
nent applications. They provide ESMF with a uni-
fied mechanism for notification messages and for
timing and counting events.

Performance Issues
Major Earth science codes have fundamentally in-
satiable compute requirements that in most cases

can only be met by scaling to large numbers of
processors. We've designed ESMF to have minimal
negative impact on an application’s ability to scale.

Our goal is to have less than 10 percent degra-
dation in performance in both the NCEP opera-
tional forecast code and in MIT’s GCM. We plan
to compare state-of-the-art production forms of
these codes within and outside the framework us-
ing a production-hardened fully functional ver-
sion of ESMF around third quarter 2004. These
tests will be quite stringent; the NCEP opera-
tional code has been aggressively tuned to ensure
that it can scale adequately for producing national
and global weather forecasts in real time. The
MITgem code contains a customizable commu-
nication layer that lets us tune it to scale on many
different platforms.®

Several ESMF design features directly address
concerns about framework overhead. We made the
framework focus on interoperability between rela-
tively large coarse-grained components and leave in-
ternal numerics (another key component in overall
performance) to be implemented in the manner
deemed most efficient by applications developers.
Consequently, a central way in which the framework
will affect performance is in scalable communication.

Several studies show that having the flexibility to
target custom communications libraries for key
primitives can boost application scaling by factors
of two or more.!?" The formulation of ESMF
state objects as containers that reference raw data
contributes to performance. A coupler component
can be very lightweight for gridded components
that use the same gridding and unit conventions
and that execute one after the other. This compo-
nent need only add references to the import state
contents into the export state object. This avoids
unnecessary (and potentially expensive, in terms of
computation and memory resources) overhead
from using coupler components.

igure 10 summarizes the classes that make
up ESMEF. Over the coming year, we will
extend functionality as well as migrate
several existing science codes into ESMF.
In many of today’s Earth system models, a signifi-
cant fraction of code is devoted to the functional-
ity encapsulated in ESMF. Identifying and demon-
strating a unified standard for these elements thus
enables better sharing of code and relieves Earth
system model development groups of a sizable soft-
ware-engineering burden. This in turn will let
model developers focus more effort on algorithmic
innovation and application scenarios. s
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Figure 10. Summary of the classes that make up ESMF.
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